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Introduction and Motivation

Research Objectives

(I) Develop efficient and robust methods to produce lower-dimensional recursive
nonlinear filtering equations driven by the observations; particle filters for the
integration of observations with the simulations of large-scale complex systems.

(II) Develop an integrated framework that combines the ability to dynamically steer the
measurement process, extracting useful information, with nonlinear filtering for
inference and prediction of large scale complex systems.
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Introduction and Motivation

Motivating Problems and Characteristics

Problems are,

(i) Multiscale

(ii) Chaotic

(iii) High dimensional

(iv) Sparse observations

(v) Ability for sensor selection, placement and control - adaptive observation

(vi) Sensors correlated to environment

Motivating problems,

(a) Weather prediction and forecasting

(b) Detection and tracking of contaminants in the environment
(e.g. chemical and radioactive)
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Introduction and Motivation

Estimation and prediction in Earth (climate) system models

Figure: NCAR Community Climate System Model [1]
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Figure: Coupling components in climate model
[NCAR] [1]
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Introduction and Motivation

Simple multiscale example: Lorenz-Maas model

Coupled equations [2], [3], [4] :

dρx

dt
= −ρyLz + (ρx + f ′ρy)ρz − ρx

dρy

dt
= ρxLz − (f ′ρx − ρy)ρz − ρy

+ k1q + k2(x − k3ρy)

dρz

dt
= −ρ2

x − ρ2
y −µρz

ε2

ε3

dLz

dt
= −Lz − k4x

ε2
dx
dt

= −y2 − z2 − ax + aF0

+ ε1(k3ρy − x)

ε2
dy
dt

= xy − bxz − y + G

ε2
dz
dt

= bxy + xz − z

Figure: Coupled Lorenz 1984 atmosphere – Maas
2004 ocean models
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Introduction and Motivation

Simple multiscale example: Lorenz-Maas model

Coupled equations [2], [3], [4] :

d
dt

X = b(X, Lz, Z1)

ε
d
dt

Lz = −Lz − k4Z1

ε2 d
dt

Z = f0(Z) + εf1(X2, Z1),

where ε is O(10−2).

Figure: Coupled Lorenz 1984 atmosphere – Maas
2004 ocean models
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Introduction and Motivation

Estimation and prediction in Earth (climate) system models

Sensor Data
(MOCHA,
dropsondes,
drifters)

Data assimilation methods
(EnKF, 3D-,4D-Var, OI)

GCMs

Climate phenomena

description of

estimate/
prediction

Weather phenomena can be studied through estimation/prediction using GCMs.

GCMs can be improved using data assimilation results.

Filtering theory provides rigorous approach to quantifying probabilistic
information - as opposed to methods such as 3D-Var, 4D-Var, and OI.
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Introduction and Motivation

Mobile Platforms, Adaptive Observations, and Correlated Noise

Figure: NCAR Globe, 500km Sectors
Figure: UAV Flight Controls [5]

1 Sensor Selection / Placement
2 Sensor Control
3 Mobile Platforms are Embedded in Signal Environment→ Correlated Noise
4 Require Efficient and Robust Filtering Methods for Multiscale Correlated Case
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Reduced Order Dynamic Data Assimilation

Multiscale Correlated Noise Problem Setup

Let (Ω,F, {F}t>0,Q) be a probability space upon which the following SDEs are defined:

dXε
t =

[
b(Xε

t , Zε
t ) +

1
ε

b1(Xε
t , Zε

t )

]
dt + σ(Xε

t , Zε
t )dWt Xε

0 = x

dZε
t =

1
ε2 f (Xε

t , Zε
t )dt +

1
ε

g(Xε
t , Zε

t )dVt Zε
0 = z

dYε
t = h(Xε

t , Zε
t )dt + αdWt + βdVt + γdUt Yε

0 = 0

= h(Xε
t , Zε

t )dt + dBt

1 Wt, Vt and Ut are independent standard BM under Q
2 0 < ε� 1 is the time-scale separation
3 w.l.o.g., let α2 + β2 + γ2 = 1 and define the standard BM

Bt ≡ αWt + βVt + γUt
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Reduced Order Dynamic Data Assimilation

The Nonlinear Filter

The objective in filtering theory is to obtain a solution for the normalized conditional
measure - the filter,

Normalized Conditional Measure

πε
t (ϕ(X

ε
t , Zε

t )) ≡ EQ [ϕ(Xε
t , Zε

t ) | Y
ε
t ] ,

where ϕ(Xε
t , Zε

t ) is an integrable function and

Yε
t ≡ σ({Yε

s − Yε
0 | s ∈ [0, t]}).

1 Density equivalent of πε
t satisfies a high dimensional SPDE: “Curse of

Dimensionality”.
2 If ϕ = ϕ(Xε

t ) and Xε
t ⇒ X0

t as ε→ 0, does there exists πε
t → π0

t ?
3 Proof and insight will enable improvement of nonlinear filtering algorithms for

multiscale correlated noise case.
4 Xε

t ⇒ X0
t does not imply πε

t → π0
t
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Reduced Order Dynamic Data Assimilation

Mathematical Tools and Proof of Convergence Approach

1 Introduce an unnormalized conditional measure

Unnormalized Conditional Measure ρεt

ρεt (ϕ)

ρεt (1)
=
EPε

[
ϕ(Xε

t , Zε
t )D̃ε

t

∣∣∣Yε
t

]
EPε

[
D̃ε

t

∣∣∣Yε
t

] = EQ [ϕ(Xε
t , Zε

t ) | Y
ε
t ] = π

ε
t (ϕ)

2 Introduce function valued dual process, vε, satisfying a BSPDE
3 Ansatz v0, ρ0,π0

4 Asymptotic expansion of vε = v0 +ψ+ R; ψ the corrector, and R the remainder
5 Utilize homogenization estimates [6], estimates for BSPDE [7] and Feynman-Kac

representations with FBDSDE [8] to prove convergence,

Dual Convergence Implies Filter Convergence

E
[∣∣ρε,x

T (ϕ) − ρ0
T(ϕ)

∣∣p]6 ∫
R2
E
[∣∣vε

0 (x, z) − v0
0(x)

∣∣p]QXε
0 ,Zε

0
(dx, dz)
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The Nudged Particle Filter Method

Particle Filters - Discrete Time [11]

true path

prediction

prior

observation

Continuous signal, discrete observations:

dXt = b(Xt)dt + σ(Xt)dWt and Ytk = h(Xtk) + Btk
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The Nudged Particle Filter Method

Particle Filters - Discrete Time [11]

true path

prediction

prior

observation

1 {xi ∈ Rm}Ns
i=1, an ensemble of particles.

2 {wi}, normalized weights:
∑Ns

i=1 wi = 1.

Approximation of posterior distribution at time tk

πk(x|y0:k) ≈
Ns∑
i=1

wi
kδ(x − xi

k)
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The Nudged Particle Filter Method

Particle Filters - Discrete Time [11]

true path

prediction

prior

observation

Sequential Importance Sampling - SIS

πk(x|y0:k) ∝ ψ(x), xi
k ∼ q(x), then wi

k ∝
ψ(x)
q(x)

ψ, can be evaluated

q, easy to draw samples from
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The Nudged Particle Filter Method

Particle Filters - Discrete Time [11]

true path

prediction

prior

observation

Weights Update

wi
k+1 ∝

u(yk+1|xi
k+1)u(x

i
k+1|x

i
k)

q(xi
k+1|x

i
k)

wi
k

Typically (for simplicity) choose: q(xi
k+1|x

i
k) = u(xi

k+1|x
i
k)

Nudged Particle Filter

Choose q(xi
k+1|x

i
k) in an intelligent, but flexible hands-off manner
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The Nudged Particle Filter Method

Particle Filters - Discrete Time [11]

true path

prediction

prior

observation

δt

Δtt t+Δt

ave. window
trans.

Heterogenous Multiscale Method (HMM) for Homogenized Hybrid PF (HHPF),

dX0
t = b(X0

t )dt + σ(X0
t )dWt and Ytk = h(X0

tk
) + Btk

Doeblin Condition

For every fixed x, the solution Zx
t of

dZx
t = f (x, Zx

t )dt + g(x, Zx
t )dVt

is ergodic and converges rapidly to its unique stationary distribution µx.
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The Nudged Particle Filter Method

Nudging of particles

Standard	
  Par)cle	
  filter	
  

Not very efficient ! 

Par$cle	
  filter	
  with	
  	
  
proposal	
  transi$on	
  

density	
  

Continuous signal, discrete observations:

dXt = b(Xt)dt + σ(Xt)dWt and Ytk = h(Xtk) + Btk

Nudge particles:

dX̂i
t =

(
b(X̂i

t) + ui
t

)
dt + σ(X̂i

t)dWt, t ∈ (tk, tk+1).
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The Nudged Particle Filter Method

Multiscale Lorenz ’96 Model [13], [14]

1 Mid-Latitude Atmospheric Dynamics
2 Linear Dissipation
3 External Forcing F
4 Quadratic Advection-Like Terms

(Conserve Total Energy)
5 Chaotic for a wide range of F, hx, hz

X1

X2

X3

X4 X5

X6

X7

X8

Zj,1

dXk
t = (Xk−1

t (Xk+1
t − Xk−2

t ) − Xk
t + F +

hx

J

J∑
j=1

Zk,j
t )dt k = 1, . . . , K,

dZk,j
t =

1
ε

(
Zk,j+1

t (Zk,j−1
t − Zk,j+2

t ) − Zk,j
t + hzXk

t

)
dt j = 1, . . . , J.
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2 Linear Dissipation
3 External Forcing F
4 Quadratic Advection-Like Terms

(Conserve Total Energy)
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X1

X2

X3

X4 X5
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X7
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J
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t , k = 1, . . . , K,

dZk,j
t =

1
ε

(
Zk,j+1

t (Zk,j−1
t − Zk,j+2

t ) − Zk,j
t + hzXk

t

)
dt +

1√
ε
σzdVj

t, j = 1, . . . , J.
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The Nudged Particle Filter Method

Nudged HHPF (HHPFc) on Lorenz ’96: 36 slow, 360 fast

Figure: PF, Observations every 36 hours Figure: Nudged HHPF, Observations every 72
hours

Legend:

Truth (Top 3 Plots), Error (Bottom Plot); Filter mean with 1 std and 2 std
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Adaptive Observations - Dynamically Steering the Measurement Process Information Theoretic Cost Functionals

Information TheoryMotivation and Sensor Placement / Control

Figure: NCAR Globe, 500km Sectors
Figure: UAV Flight Controls [5]

Improved posterior yields better prior for next observation cycle (e.g. prediction
or forecasting)

Information theory provides general tool for describing improvement in
knowledge (uncertain) of random variables

A useful ‘metric’ is Kullback-Leibler divergence - for filtering, expectation of
‘distance’ between posterior and prior over all possible observations
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Adaptive Observations - Dynamically Steering the Measurement Process Information Theoretic Cost Functionals

Basic Tools in Information Theory

Shannon Entropy

Shannon entropy, an absolute entropy,

H(X) ≡ −

∫
X

p(x) log p(x)µ(dx)

quantifies the information content of a random variable. It can be interpreted as how
much uncertainty there is about the random variable.

Entropy of Normal Random Variable

If X ∼ N(ν,Σ), then
H(X) = log((2πe)d|Σ|)/2,

where | · | will denote the determinant and d is the dimension of Σ ∈ Rd×d.

Conditional Entropy

H(X|Y) ≡ −

∫
X×Y

p(x, y) log p(x|y)µ(dx, dy)
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Adaptive Observations - Dynamically Steering the Measurement Process Information Theoretic Cost Functionals

Maximization of Kullback-Leibler Divergence

Definition (Kullback-Leibler Divergence (DKL))

A relative entropy that quantifies the ’distance’ between two densities. Given densities
p and q, their KL divergence is defined as:

DKL(p||q) ≡
∫
X

p(x) log (p(x)/q(x))µ(dx)

If p is the actual density for a random variable X, then DKL(p||q) can be interpreted as
the loss of information due to using q instead of p.

Discrete Time Objective Functional

J(uk|y0:k−1) =

∫
Y

DKL(p(xk|y0:k; uk) || p(xk|y0:k−1; uk))p(yk|y0:k−1; uk)dyk

=
...

= H
∣∣
y0:k−1

(Xk) − H
∣∣
y0:k−1

(Xk|Yk; uk)
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(Xk) − H
∣∣
y0:k−1

(Xk|Yk; uk)
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nVortex FlowfieldModel

1 Deterministic vortex
dynamics simulates the
Euler equations

2 The first random point
vortex method to
simulate viscous
incompressible flow was
introduced in [15]

J ≡
[

0 1
−1 0

]
,

dXi,t =
1

2π

n∑
k=1

Γk

‖Xk,t − Xi,t‖2
2
J(Xk,t − Xi,t)dt +

√
σxdWi,t, Xi,0 = x ∈ R2,
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A Controllable Tracer for Adaptive Observations

Assume that tracer is controllable,

dXi,t = fi(Xt) + bi(ui,t) +
√
σxdBi,t and ui,t ∈ U

Ytk = h(Xtk) + Btk

where U is some admissible control set.

How one might control the tracer so as to best improve the filtering process?

One approach, formulation of an optimal control problem; specifically in terms of
information theoretic quantities.
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PF Implementation and Result

Figure: PF with no control
Figure: Controlled PF with RHC over 10
observation steps
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PF Implementation and Result

Figure: PF, no control - posterior entropy
Figure: PF, control with RHC over 10 observation
steps - posterior entropy

* Cost Function shown is: −H(X|Y).
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PF Implementation and Result

Figure: PF, no control - Vortex-1 x-state
Figure: PF, control with RHC 10 observation
steps - Vortex-1 x-state

Figure: x-state shown in top figure, while RMSE shown in bottom
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PF Implementation and Result

Figure: PF, no control - Vortex-1 y-state
Figure: PF, control with RHC 10 observation
steps - Vortex-1 y-state

Figure: x-state shown in top figure, while RMSE shown in bottom
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Summary

Objectives:

(I) Develop an integrated framework that combines the ability to dynamically steer the
measurement process, extracting useful information, with nonlinear filtering for
inference and prediction of large scale complex systems.

(II) Develop efficient and robust methods to produce lower-dimensional recursive
nonlinear filtering equations driven by the observations; particle filters for the
integration of observations with the simulations of large-scale complex systems.

Presented:

(i) Use of powerful mathematical techniques - homogenization, SPDE, FBDSDE - to
derive convergence results of correlated filter in multiscale problems as well as
provide future mechanisms for extension of nudging particle method and
information flow for the multiscale correlated noise case.

(ii) Introduced framework by which to breakdown adaptive observation problem into
hierarchy of sensor selection / placement and sensor control problems.

(iii) Described preliminary algorithms using information theoretic cost functionals to
drive the sensor placement and control problems - demonstrations on test bed
problems.
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Reporting

Journal Articles:
Namachchivaya, N. Sri; Random dynamical systems: addressing uncertainty,
nonlinearity and predictability; Meccanica, (51, 2975-2995); 2016
https://link.springer.com/article/10.1007%2Fs11012-016-0570-4

Lingala, N., Namachchivaya, N. Sri, et al.; Random perturbations of a periodically driven
nonlinear oscillator: escape from a resonance zone; Nonlinearity, (30, 4, 1376); 2017
http://iopscience.iop.org/article/10.1088/1361-6544/aa5dc7/meta

Yeong, H. C., et al. Particle Filters with Nudging in Multiscale Chaotic Systems: with
Application to the Lorenz-96 Atmospheric Model; Submitted to ZAMM, Journal of
Applied Mathematics and Mechanics

Beeson, R., et al., Dynamic Data-Driven Adaptive Observations in a Vortex Flowfield; In
Preparation to European Journal of Applied Mathematics

Conference Proceedings:
Beeson, R., et al., Dynamic Data-Driven Adaptive Observations in a Vortex Flowfield; 9th
European Nonlinear Dynamics Conference; Budapest Hungary; June 2017

Yeong, H.C., et al. Particle Filters with Nudging in Multiscale Chaotic Systems: with
Application to the Lorenz-96 Atmospheric Model; Budapest Hungary; June 2017

Lingala, N., Namachchivaya, N. Sri, et al.; Random perturbations of a periodically driven
nonlinear oscillator: escape from a resonance zone; SIAM Conference on Dynamical
Systems 2017, Snowbird Utah
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