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Introduction	and	Motivation

Data-driven	modeling:

• Commonly	used	for	a	variety	of	research	and	societal	needs
• Energy,	food,	sustainability,	security,	medical	applications	etc.

Question:	Is	the	role	of	data	limited	to	the	verification	of	first-principles	or	finding	
empirical	relations,	or	can	be	used	to	discover	the	underlying	governing	model?

Satellite	image	of	phytoplankton	in
the	Baltic	Sea	around	Gotland	(USGS)

Diffuse	Midline	Gliomas	(National	
Cancer	Institute)
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Dynamic	Data-Driven	Application	Systems	Paradigm

Measurements
(Experiments,	Field-

data,	etc.)

Simulations
(Mathematical	

models,	governing	
equations,	etc.)

Theory
(First	Principles,	
Prior	Knowledge)

Dynamic	Feedback	and	
Control	Loop

Update	Algorithms

Guide	
Processing

Reduce	Uncertainty

Refine	
Models
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Bayesian	Learning	and	Deep	Learning	
of	Dynamical	Models

Sparse	Regression:
Learn	functional	form	of	model	equations	only	from	data
• [Brunton	et	al.,	‘16;	Schaeffer	et	al.,	‘17;	Rudy	et	al.,	’17]
• Adaptive	&	Dynamic:	[Kulkarni	et	al.,	2020,	subm.]

Dynamic	Bayesian	Learning:
Estimate	the	pdf	of	model	equations	

(while	learning	states,	parameters,	etc.)
• GMM-DO:	[Lu,	SM-MIT	’13;	Lu	and	
Lermusiaux,	2016;	Lin	and	Lermusiaux,	
2020;	Gupta	and	Lermusiaux,	in	prep]

• ESSE:	[Lermusiaux	et	al,	2004,	2007]

Deep	Learning:	
Predict	future	states	without	finding	

explicit	representation	of	model	equations
• ODEs:	[Ogunmolu et	al.,	‘16;		Trischer et	al,	
‘16; Yeo,	‘16]

• PDEs:	[Kulkarni	et	al.,	2020,	in	prep.]

Learning	without	Prior
Use	only	data	and	no	prior	knowledge	
to	estimate	the	model	equations,	
states,	parameters,	etc.		

Learning	with	Prior
Use	data	and	uncertain	prior	knowledge,	
to	evolve the	pdf of	model	equations,
states,	parameters,	etc.



5

Discovering	the	Governing	Model	Dynamics

Given: State	measurements,	state	rate	of	change	measurements	at	discrete	times

Construct: Feature	library		– typically	using	polynomials	etc.
Solve: Sparse	regression	problem	to	identify	the	active	features	in	the	feature	library

(typically	sparse,	as	functional	form	only	contains	a	few	terms	on	the	RHS)

Obtain: Equations	in	symbolic	form	by	identifying	the	active	feature	in	the	library

Brunton	et	al.	‘16,	Schaeffer	et	al.	‘17,	Rudy	et	al.	‘17	
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Issues:
- LASSO	does	not	yield	unique,	sparse,	and	robust	coefficient	vector

- The	actual	functional	representation	may	not	be	contained	in	the	library

- Scaling	of	different	states	not	accounted	for

State-of-the-Art:
- L1 regularized	regression	(LASSO)	for	promoting	sparsity

- Fixed	feature	space	– typically	polynomials

- Common	hyperparameter:	weight	penalty

Discovering	the	Governing	Model	Dynamics

Solutions:

- Dual	LASSO	for	feature	selection	– robust	model	selection	even	from	highly	

correlated	features

- Adaptive	feature	growth,	scale-based	thresholding	– grow	the	feature	library

Brunton	et	al.	‘16,	Schaeffer	et	al.	‘17,	Rudy	et	al.	‘17	



Sparsity: Only												present	(active)	polynomials
in	the	feature	library	– impose	sparsity
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Mathematical	Setup,	Notation
States: at	discrete	times

Rates	of	Change: at	the	same	time	instants
Feature	Library: contains	polynomials	of	states	up	to	maximum	degree

Solve	optimization:

=

Obtain: Equations	of	the	form																																										by	identifying
the	active	components	in	the	feature	library

Ideal	sparsity	is	L0
Convex	counterpart:	L1

Total	number	of	terms
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Analysis	and	Pitfalls	of	LASSO

- Using	the	Rademacher	averages	and	the	symmetrization	lemma,	we	get:

Kakade et	al.	‘09;	Bickel	et	al.	‘09;	Ghaoui et	al.	‘10

- Another	important	task	is	to	choose	the	penalty	weight	
- Higher	the	correlation	amongst	the	features	in														,

lower	the	value	of

- Analytical	suggestion:																																									,	significant	tuning	required

- Main	issues:	LASSO	fit	(i.e.										)	is	unique,	but	the	weight	vector								is	not
- LASSO	tends	to	choose	a	feature	at	random	amongst	the	correlated	features	

As																				,	this	
bound	is	impractical



- Dual	LASSO	tells	us	the	correct	active	features	robustly,	but	does	not	yield	a	good	fit	for	
their	coefficient	values
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Dual	LASSO	for	Feature	Selection	
- LASSO	is	convex													solve	the	dual	optimization	of	LASSO	instead	of	the	primal

- Dual	LASSO:

- Stationarity	condition:

- KKT	conditions:
Choose	dual	active	
features	using	this	

- Strong	duality													optimal	primal	and	dual	active	features	are	the	same!	(with	h.p.)

- Once	the	active	features	are	determined	using	dual	LASSO,	perform	ridge	(L2)	
regression	to	determine	the	coefficient	values

Unique	
for	LASSO

Unique	for	
dual	LASSO
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Dual	LASSO	for	Feature	Selection	

- Dual	LASSO:

- Stationarity	condition:

- KKT	conditions:
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Results:	Lorentz	63	Attractor
Actual	system:

Learned	system:
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Results:	Other	Dynamical	Systems

Figure: Showcasing 
generative capabilities of  
learned model
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- Symbolic	equation	discovery	is	inaccurate	if	the	true	functional	form	
is	not	contained	in	the	span	of	the	considered	function	library

- Adding	and	removing	features	in	a	greedy	manner	is	not	optimal

Solution:
- Use	an	functional	library	consisting	of	orthogonal	functions.	Grow	/	

shrink	the	library	adaptively.	As	functions	are	orthogonal,	once	a	
component	is	dropped,	it	should	never	reappear

- Perform	sequentially	thresholded	ridge	regression1,	as	the	
formulation	may	not	be	sparse	in	this	new	(orthogonal	basis)

- Perform	symbolic	simplification2 to	obtain	the	final	governing	
equations	in	functional	form

Adaptive	Feature	Library

1	Rudy	et	al.	‘17;	Bailey	et	al.	‘14
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Discovering	the	Governing	Model	Dynamics

Add	the	feature	to	the	library	if	the	loss	
decreases	substantially

Remove	the	feature	from	the	library	
if	the	loss	does	not	increase	much
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Results:	Quadratic	Lorenz	Attractor

Actual	system:

Learned	system:
After	orthogonal	
feature	regression
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Results:	Marine	Ecosystem	Model

3-Component	Nutrient-
Phytoplankton-Detritus	
(NPD)	Model:

Fennel	and	Neumann,	2014

N	uptake	by	P

P	loss	due	to	Respiration

P	loss	due	to	Mortality

Remineralization
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Results:	Marine	Ecosystem	Model
Learned	system:

After	symbolic	simplification	and	scale	
based	thresholding

Taylor	series

Further:
• To	accelerate	learning,	we	can	use	a	

combination	of	orthogonal	functions	
and	common	biogeochemical	functional	
forms	such	as	Michaelis-Menten,	etc.	

Legendre	
Polynomials
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• Developed	‘dual	LASSO	feature	selection’,	that	relies	on	the	uniqueness	of	the	dual	
solution	for	the	active	set	selection,	to	address	the	limitations	of	the	current	state-
of-the-art	LASSO	based	algorithm	for	model	discovery

• Developed	a	new	methodology	learns	the	governing	equations	from	scratch	by	
iteratively	building	the	feature	library	using	appropriate	orthogonal	functional	basis.	

• We	showcased	results	of	the	learning	schemes	on	the	classic	Lorenz	63	system,	a	
quadratic	Lorenz	system,	and	a	marine	ecosystem	model	with	a	non-polynomial	
nonlinearity.

Future	Work:

• Using	a	mix	of	larger	family	of	orthogonal	functions,	kernel	composition	etc.	

• Applications	in	the	presence	of	model	and	observation	noise,	and	to	higher	
dimensional	systems.

• Using	the	learned	system	to	guide	future	observations	to	close	the	loop	for	the	
Dynamic	Data	Driven	Applications	Systems	(DDDAS)	paradigm.

Conclusions	and	Future	Work


